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ABSTRACT: 
 
Operational large-scale inventories, such as the State of Mississippi’s inventory system, must have algorithms to rapidly categorize 
the forest resource into statistically efficient strata. These procedures must be repeatable and automated for timely and cost effective 
implementation of short-cycle regional inventory estimation. In addition to longer-term stand structural changes, Landsat Thematic 
Mapper (TM) data allows the detection of change in forest strata caused by forest management (harvests and thinnings) and natural 
disasters (2005 hurricane Katrina) on a yearly basis. These classifications are necessary for 1) construction of the inventory sampling 
frame, 2) display of the current spatial distribution of forest resources and calculation of land areas by strata, and 3) calculation of 
total area volumes. In order to achieve significant gains through stratification in large-scale inventories, the forest resource must be 
classified not only by broad timber type but also by a measure of size per unit area. In the past, large-scale inventories have stratified 
only on the basis of crude GIS timber types such as pine, mixed-pine-hardwood, and hardwood. These strata are not separated on the 
basis of the variables of interest, volume or size; hence, they are not adequate for achieving precision gains due to stratification 
which result in decreased required sample size and measurement cost.  Neural networks and multiple linear regression approaches 
were used to estimate forest stand basal area per hectare from Landsat Enhanced Thematic Mapper Plus (ETM+) image data of a 
227,873 hectare forested area in four counties of Mississippi.  Basal area was estimated by forest timber type (pine, mixed-pine-
hardwood, and hardwood) into distinct size classes to generate strata yielding a minimum of 25% gain in the precision of stratified 
random sampling volume estimators resulting in a very significant reduction of sample size and inventory cost. These modeling 
methods readily lend themselves to the automation necessary for repeated short-cycle inventory assessments, when suitable training 
data sets are available for the current inventory area. 
 
 
 

1. INTRODUCTION 

Operational large-scale inventories, such as the State of 
Mississippi’s inventory system, must have algorithms to rapidly 
categorize the forest resource into statistically efficient strata. 
These procedures must be repeatable and automated for timely 
and cost-effective implementation of short-cycle regional 
inventory estimation. 
 
In order to achieve significant gains through stratification in 
large-scale inventories, the forest resource must be classified 
not only by broad timber type for administrative, reporting, and 
visualization purposes, but also by a measure of timber size per 
unit area. In the past, large-scale inventories have stratified only 
on the basis of crude GIS timber types such as pine, mixed-
pine-hardwood, and hardwood (Bauer et al., 1994). These strata 
are not separated on the basis of the variables of interest, 
volume or size; hence, they are not adequate for achieving 
precision gains due to stratification which result in decreased 
required sample size and cost. 
 
Statistically efficient gains from stratified sampling frames are 
dependent upon separation of the means and variances of the 
response variable of interest.  Cochran (1977) gives the 
following formula for estimation of statistical gains from 
optimal allocation of simple random samples to strata. 
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where: 
 
 Vran is the variance of a simple random sample of size n,  
 Vopt is the variance with the n samples optimally allocated 

to the strata, 
 h is the strata index, 
 L is the number of strata, 

 N Y and Sh h h, , are the population size, mean, and 

standard deviation of the h th stratum, 

 S and Y are the strata-weighted mean, and standard 
deviation, and 

 n and N are the total sample, and population size.  
 

Similar gain estimation equations can be derived for cluster, 
multi-stage, and two-phase sampling designs. 
 
The two far right hand side terms of Equation 1 are the 
reduction in the variance of the mean due to the separation of 
strata means and standard deviations in an optimally allocated 
sample of total size n. Thus, to maximize gains in a stratified 



 

inventory, the stratification ancillary variable must be chosen to 
provide maximum separation of strata means and variances of 
the response (inventory design) variable to be estimated. 
 
Developing statistically efficient stratified sampling frames for 
large-scale forest inventories from remotely sensed data, thus, 
requires an equation to predict a measure of size variable 
strongly related to targeted volume response variables from the 
remotely sensed data.  This equation can then be used to stratify 
the image into strata that have enough separation in mean and 
variance in the targeted volume response variables to yield 
significant efficiency gains due to an optimum sample 
allocation. Stratification on the basis of a simple stand 
composition categorization like pine, mixed-pine-hardwood, 
and hardwood are only useful for administrative, reporting, and 
visualization purposes because there is little or no separation in 
means or variances. Stratification always produces gains but 
minimal gains, generally, will not pay the cost of stratification.  
 
The objectives of this paper are to: 
 
1. Apply linear regression and neural network modeling 
methods to multi-spectral (Landsat ETM+) data to estimate a 
measure of size variable (basal area per unit area) highly 
correlated to the primary response variable (total stem outside 
bark cubic volume per unit area), and 
 
2. Post stratify the inventory study area into typical size class 
based strata, and estimate the gains obtained by the 
stratifications.  
 
 

2. BACKGROUND  

Recent advances in change detection technology and 
classification methodologies and procedures are making it 
possible to use multispectral data to provide accurately 
stratified images, not only by crude GIS forest types but also by 
density classes (Berryman, 2004; McCombs et al., 2003) and 
growth stages (Fujisaki et al., 2005).  Berryman (2004) used 
multispectral Landsat EMT+ (30m) data and light detection and 
ranging (lidar) data to classify images of natural southeastern 
US pine stands by number of trees per unit area and height.  
McCombs et al. (2003) used small footprint lidar and high 
resolution multispectral (0.61m) data to identify individual 
trees, mean height, and trees per unit area in pine plantations.  
Fujisaki et al. (2005) characterized natural forest stands into 
regeneration-immature, intermediate, and mature growth classes 
using bands 1 – 4 of Landsat TM data.  Large-area inventories 
(Parker et al., 2005) can use these advanced technologies to 
develop stratified sampling schemes resulting in increased 
precision with fewer required plots to meet specified sampling 
error at stated confidence levels.  Fewer field plots translate into 
reduced costs, which are significant for large inventories.  
Statistically efficient stratification of the resource will also 
result in improved estimation of merchantable volumes, 
biomass, and sequestered carbon at reduced costs.  
 
The forest products industry is a major component of 
Mississippi’s economic base. Timber is one of Mississippi’s 
most valuable crops and accounts for more than $1 billion of 
harvested forest products annually (Munn and Tilley, 2005).  
The State has 6.8 million forested hectares and over 200,000 
landowners. The amount of pine and hardwood stumpage 
utilized in 2001 resulted in $801 million in payments to 
Mississippi landowners.   

The Mississippi Institute for Forest Inventory (MIFI) is meeting 
the need for an accurate and spatially based inventory of the 
State’s forest resources.  Mississippi has been divided into five 
forest regions, and one region is inventoried each year, on a 
rotating basis, to generate current volume estimates by species 
type, age class, and land ownership.  Allocation of sample plots 
is designed to achieve a 10 – 15% sampling error for total cubic 
foot volume outside bark with 95% confidence at the county 
area level. 
 
The operational objective of this research is to reduce the cost 
while improving the estimates of current and future inventories 
of timber volume.  Because of cooperatively funded research 
and development efforts between MIFI and the Mississippi 
State University Forest and Wildlife Research Center (FWRC), 
the results of this work are uniquely positioned to have direct 
impact on a large-area forest inventory and the forest products 
economic sector of Mississippi.   
 
 

3. METHODS 

The data utilized in this study are associated with the 1999 
Mississippi Forest Inventory Pilot Program (Parker et al., 2005) 
that directly preceded MIFI’s initial operational inventory in 
2004.  Random plots were allocated to a 227,873 hectare 
forested area in four counties of east central Mississippi using 
stratified random sampling criteria based on GIS forest cover 
types (pine, mixed-pine-hardwood, and hardwood) derived 
from 1999 Landsat ETM+ leaf-on, 30-meter resolution, 
multispectral satellite imagery.  Determination of forest cover 
types was  based on the standard normalized difference 
vegetation index, NDVI, (Sader et al., 2003).  US Geological 
Survey (USGS) imagery was obtained from the Global Land 
Cover Facility Web site, 
http://glcf.umiacs.umd.edu/index.shtml, supported by the 
National Aeronautical and Space Administration (NASA) and 
the University of Maryland.  The number of plots allocated to 
each county in order to achieve a +- 10% sampling error at the 
95% confidence level was estimated from the variability for 
total cubic volume.  Plots were allocated optimally based on 
forest cover type, but because the mean and variance separation 
of the cover types were minimal, the allocation for all practical 
purposes was proportional.  Global positioning system (GPS) 
units were used to navigate to plots where field inventory data 
were collected. 
 
A one-hidden layer, four-element back propagation neural 
network and multiple linear regression analysis (Table 1) were 
applied to the Landsat ETM+ multispectral data to develop the 
best possible system for estimating basal area.  Mulitspectral 
bands 1-5 and 7, and two derived variables, NDVI and 
normalized difference moisture index (NDMI) (Sader et al., 
2003), were utilized.  Only procedures that can be readily 
automated were investigated.  Unless a system can be 
automated, it is not efficient for large-area inventories that 
require extensive image processing for rotating regional 
inventories on an annual basis or inventories monitoring 
frequent change.  
 
Considerable effort was expended developing models that 
included interactions of raw band multispectral data and the 
derived variables.  Past researchers have often not devoted 
sufficient time to increasing classification accuracy by 
including interaction terms in models.  Neural networks were 



 

investigated, in addition to regression analyses, because of their 
native capability of detecting complex interaction relationships.  

 
Regression coefficients 
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b 

 
c 
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Sy x 

 
 
 

R2 

 
Pine  

1 

 
51.768 

 
.2795 

 
-.50342 

 
128 

 
5.933 

 
44.5 

 
Mix 

2 

 
83.995 

 
-.7732 

 
-.38015 

 
251 

 
6.523 

 
40.6 

Hard
wood  

3 

 
90.814 

 
-.5783 

 
-.47936 

 
109 

 
7.584 

 
29.5 

 
Table 1. Regression coefficients and fit statistics (no. of 
observations, standard error of prediction, and coefficient of 
determination) for predicting basal area (BA) per hectare by 
pine, mixed-pine-hardwood, and hardwood forest GIS types 
using leaf-on Landsat ETM+ multispectral bands 2, 3, and 5 for 
four counties in Mississippi, USA, in 1999, where BA = a + b 
(band 3) + c ((band 2 * band 5) / (band 3)). 
 
 

4. RESULTS 

Tables 2 - 5 summarize for the neural network and regression 
basal area per unit area prediction models the 
 
1. Indices of fit, I2, (one minus the quantity of the error sum 

of squares divided by the total sum of squares) and root 
mean squared errors, RMSE, by GIS forest type and  

 
2. User and producer errors associated with the use of the 

models to post classify (stratify) 488 plots into three basal 
area classes. 

 
Producer error is the number of  plots out of the total number of 
plots for a forest type (pine, mixed, and hardwood) that were 
incorrectly identified by basal area class.  User error is defined 
as the number of one basal area class identified, as that basal 
area class, that were identified incorrectly.  The overall percent 
error was calculated as 100 times the number of incorrectly 
classed plots divided by the total number of plots.  The percent 
accuracy is 100 minus the percent error. 
 
The basal area limits were chosen to represent what the authors 
considered to be reasonable low (0 – 19.5 m2/ha], medium (19.5 
– 26.4 m2/ha], and high basal (26.4 – ∞ m2/ha) area per area for 
the study area.   
 
The strength of the relationships between basal area and the 
band data were better than anticipated.  As expected, the pine 
models were the best and the hardwood models were the worst 
models.  The enormous number of hardwood forest types in the 
study area increases the experimental noise tremendously.  In 
terms of the ability of the neural network and regression models 
to predict basal area and accurately post stratify an image into 
basal area classes, there was no practical difference.  The neural 
network model produced slightly higher indices of fit and lower 
RMSE than the regression models.  However, the regression 
model had a lower classification error rate.  The neural network 
was expected to out perform the regression model because of its 
native ability to model complicated interactions.  The 

regression probably performed as well as the neural network 
because a great deal of effort was put into developing its 
functional form including interaction terms. 
 
Assessment of the capability of the basal area prediction system 
to create strata that would produce large gains in precision is 
shown in Table 6.  These data demonstrate that stratification 
systems based on basal area prediction can yield a 25% gain in 
precision and about a 25% reduction in the number of plots 
necessary to meet the required precision and confidence level of 
the inventory.  This gain is relatively large compared to the 
meager 1% precision gain obtained when stratification is done 
on simple GIS forest types. 
 
Table 6 was prepared by determining for the GIS forest type 
stratification the number of plots (150) when optimally 
allocated to the strata that would yield an estimated volume 
within +- 10% of the true means volume at the 95% confidence 
level.  The 150 plots were then optimally allocated to the 
stratifications of basal area, GIS forest type, and basal area 
within GIS forest type.  Using these allocations the gains in 
precision due to stratification were calculated according to 
Equation 1.  Potential reductions in sample size due to 
stratification were determined by calculating the numbers of 
samples required to estimate the mean volume within +- 10% of 
the true mean volume at the 95% confidence level. 
 
Table 7 shows the design statistics and optimal allocation for 
each classification (stratification) given in Table 6.  
 
 

5. DISCUSSION AND CONCLUSIONS 

The basal area per unit area prediction strength of the regression 
and neural network models were for all practical purposes 
identical.  In both models for all GIS types, the significant 
variables were bands 2, 3, and 5.  The interaction term (band 2 
* band 5) / (band 3) accounted for most of the variation in basal 
area per unit area.  The model term, band 3, while accounting 
for a small amount of the variation, acts as a correction term to 
compensate for overshooting by the interaction term.  After 
inclusion of the raw band information in the regression and 
network models, the derived variables, NDVI and NDMI, did 
not enter into the models. 
 
The indices of fit for the models and the ability of the models to 
accurately post stratify the image into basal area classes, were 
surprisingly good.  These equations allowed a stratified 
efficiency gain of 25% and reduction of required sample size of 
20% for the 3-basal area classification example chosen.  While 
the gains in precision are good, there is great opportunity for 
even larger gains by improving the relationship of remotely 
sensed data and measures of stand density.  We are currently 
investigating the use of lidar data and change detection 
variables as possible means of improving the accuracy of stand 
density estimates.   
 
Results were only reported for a typical basal area classification 
that would be implemented by the MIFI inventory system.  
Trials with numerous 3- and 4-class basal area classifications 
(different class limits) yielded similar gains.  It is worth noting 
that in these trials we observed that classification accuracy was 
very sensitive to number of classes and class limits.  Many of 
the classifications we examined had better accuracies and larger 
efficiency gains than the typical basal area classification that we 



 

reported on here.  Considerable effort should, thus, be expended 
on choosing class numbers and limits to yield maximum  

Neural network model 
Pine GIS forest type 

Ob-
served 

Estimated BA 
class 

BA 
class 1 2 3 

Total 
no. 

plots 

Pro-
ducer 
error 

% 
Pro-

ducer 
error 

           1 22 16 2 40 18 45.0 
  2 4 32 7 43 11 25.6 

3 2 18 25 45 20 44.4 
No. 
plots  28 66 34 128   
User 
error 6 34 9  49a  
% User 
error 21.4 51.5 26.5   38.3b 

RMSE 5.76   I2 0.46  
Mixed GIS forest type 

Ob-
served 

Estimated BA 
class 

BA 
class 1 2 3 

Total 
no. 

plots 

Pro-
ducer 
error 

% 
Pro-

ducer 
error 

           1 67 44 1 112 45 40.2 
  2 23 40 9 72 32 44.4 

3 6 41 20 67 47 70.1 
No. 
plots  96 125 30 251   
User 
error 29 85 10  124a  
% User 
error 30.2 68.0 33.3   49.4b 

RMSE 6.36   I2 0.43  
Hardwood GIS forest type 

Ob-
served 

Estimated BA 
class 

BA 
class 1 2 3 

Total 
no. 

plots 

Pro-
ducer 
error 

% 
Pro-

ducer 
error 

           1 23 22 1 46 23 50.0 
  2 9 19 5 33 14 42.4 

3 4 20 6 30 24 80.0 
No. 
plots  36 61 12 109   
User 
error 13 42 6  61a  
% User 
error 36.1 68.0 50.0   56.0b 

RMSE 7.44   I2 0.30  
 
Table 2. Error matrices, producer and user errors, overall error 
(a) and overall percent error (b) for classifying basal area (BA) 
per hectare by pine, mixed-pine-hardwood, and hardwood forest 
GIS types using leaf-on Landsat ETM+  multispectral bands 1 - 
5 and 7 and neural network modeling root mean squared error 
(RMSE) and index of fit (I2) for four counties in Mississippi, 
USA, in 1999.  
 
 
 
 
 

 
 

Multiple linear regression model 
Pine GIS forest type 

Ob-
served 

Estimated BA 
class 

BA 
class 1 2 3 

Total 
no. 

plots 

Pro-
ducer 
error 

% 
Pro-

ducer 
error 

           1 20 16 4 40 20 50.0 
  2 3 33 7 43 10 23.3 

3 2 18 25 45 20 44.4 
No. 
plots  25 67 36 128   
User 
error 5 34 11  50a  
% User 
error 20.0 50.7 30.6   39.1b 

RMSE 5.85    I2 0.45  
Mixed GIS forest type 

Ob-
served 

Estimated BA 
class 

BA 
class 1 2 3 

Total 
no. 

plots 

Pro-
ducer 
error 

% 
Pro-

ducer 
error 

           1 64 47 1 112 48 42.9 
  2 20 44 8 72 28 38.9 

3 5 42 20 67 47 70.1 
No. 
plots  89 133 29 251   
User 
error 25 89 9  123a  
% User 
error 28.1 66.9 31.0   49.0b 

RMSE 6.47    I2 0.41  
Hardwood GIS forest type 

Ob-
served 

Estimated BA 
class 

BA 
class 1 2 3 

Total 
no. 

plots 

Pro-
ducer 
error 

% 
Pro-

ducer 
error 

           1 23 22 1 46 23 50.0 
  2 8 18 7 33 15 45.5 

3 4 16 10 30 20 66.7 
No. 
plots  35 56 18 109   
User 
error 12 38 8  58a  
% User 
error 34.3 67.9 44.4   53.2b 

RMSE 7.48    I2 0.30  
 
Table 3. Table 3. Error matrices, producer and user errors, 
overall error (a) and overall percent error (b) for classifying 
basal area (BA) per hectare by pine, mixed-pine-hardwood, and 
hardwood forest GIS types using leaf-on Landsat ETM+  
multispectral bands 2, 3, and 5 and regression modeling root 
mean squared error (RMSE) and index of fit (I2) for four 
counties in Mississippi, USA, in 1999. 
 
 
 
 
 



 

 
efficiency gains due to stratification.  The authors are now 
investigating procedures for calculating optimum class limits 
for given numbers of classes. 
 
The results of this promising research will be employed in 
subsequent MIFI inventories to stratify by basal area within 
GIS forest type.  The current inventory reporter software that 
uses simple GIS forest type stratification is available on the 
Web at 
www.mifi.ms.gov/mission.htm.  At a minimum, using the 
models reported here, a reduction in the number of plots 
required to meet inventory precision specifications should lower 
the cost of plot measurement by at least 25%.  With the 
expectation of additional model improvement,  increased gains 
and further reduction of costs are anticipated. 
 
These procedures are reproducible and automatable for timely 
and cost effective implementation of short-cycle regional 
inventory estimation.  Even though these equations were not 
calibrated against additional images and would produce biased 
estimates of basal area, the basal area classes derived by using 
these equations would still exhibit the required mean separation.  
Gains are achieved by relative separation of means and are not 
dependent upon an extremely accurate estimated of basal area;  
thus, the basal area classification is readily automatable. 
 
 

Neural network model 
All GIS forest types 

Ob-
served 

Estimated BA 
class 

BA 
class 1 2 3 

Total 
no. 

plots 

Pro-
ducer 
error 

% 
Pro-

ducer 
error 

           1 112 82 4 198 86 43.4 
  2 36 91 21 148 57 38.5 

3 12 79 51 142 91 64.1 
No. 
plots  160 252 76 488   
User 
error 48 161 25  234a  
% User 
error 30.0 63.9 32.9   48.0b 

RMSE 6.47   I2 0.41  
 
Table 4. Error matrices, producer and user errors, overall error 
(a) and overall percent error (b) for classifying basal area (BA) 
per hectare by all (pine, mixed-pine-hardwood, and hardwood) 
forest GIS types using leaf-on Landsat ETM+ multispectral 
bands 1 - 5 and 7 and neural network modeling root mean 
squared error (RMSE) and index of fit (I2) for four counties in 
Mississippi, USA, in 1999 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Multiple linear regression model 
All GIS forest types 

Ob-
served 

Estimated BA 
class 

BA 
class 1 2 3 

Total 
no. 

plots 

Pro-
ducer 
error 

% 
Pro-

ducer 
error 

           1 107 85 6 198 91 46.0 
  2 31 95 22 148 53 35.8 

3 11 76 55 142 87 61.3 
No. 
plots  160 256 83 488   
User 
error 42 161 28  231a  
% User 
error 28.2 62.9 33.7   47.3b 

RMSE 6.57    I2 0.40  
 
Table 5. Error matrices, producer and user errors, overall error 
(a) and overall percent error (b) for classifying basal area (BA) 
per hectare by all (pine, mixed-pine-hardwood, and hardwood) 
forest GIS types using leaf-on Landsat ETM+  multispectral 
bands 2, 3, and 5 and regression modeling root mean squared 
error (RMSE) and index of fit (I2) for four counties in 
Mississippi, USA, in 1999. 
 
 

  Percentage gain  
   
   
Classi-
fication 

Due to 
mean 
difference 

Due to 
variance 
difference Total 

Required 
sample 
size (n)* 

GIS forest 
type 0.40 0.41 0.81 150 
Basal area 
(BA) 25.13 0.14 25.27 113 
GIS forest 
type and 
BA 27.97 0.59 28.56 109 
* Required samples (n) optimally allocated to produce an 
estimated mean total cubic volume outside bark within +-
10% of the true mean at the 95%  confidence level. 

 
Table 6. Estimated gains over simple random sampling due to 
optimum allocation of a sample of 150 plots to GIS forest type, 
basal area, and GIS type and basal area classifications for the 
study area. The 150 plots are the required number when 
optimally allocated to the GIS forest type. Classes estimate the 
total cubic foot volume outside bark within +-10% of the true 
mean at a 95% confidence percent.   
 



 

 
GIS forest type stratification 

   Mean Std. of  
 Area Number of volume volume Required 
Strata (ha) plots (m3/ha) (m3/ha) samples(n)*
Pine 43511 128 154.7 89.0 25 
Mixed 143855 251 163.1 104.3 97 
Hard-
wood 40506 109 175.9 108.5 28 
Total 
or 
mean 227873 488 163.8 102.1 150 
      

Basal area (BA) only stratification 
Low 
BA 72513 149 93.0 83.4 45 
Med. 
BA 119812 256 181.2 88.3 79 
High 
BA 35548 83 237.1 94.9 25 
Total 
or 
mean 227873 488 163.8 87.7 113 
      

Basal area (BA) within GIS forest type stratification 
Pine 
Low 
BA 8498 25 76.9 91.5 4 
Pine 
Med. 
BA 22775 67 157.3 73.7 9 
Pine 
High 
BA 12238 36 203.9 77.0 5 
Mixed 
Low 
BA 51008 89 94.4 81.6 23 
Mixed 
Med. 
BA 76226 133 186.8 90.8 38 
Mixed 
High 
BA 16620 29 265.4 93.8 9 
Hard. 
Low 
BA 13007 35 101.0 82.7 6 
Hard.  
Med. 
BA 20810 56 196.4 93.9 11 
Hard. 
High  
BA 6689 18 257.9 112.1 4 
Total 
or 
mean 227873 488 163.8 87.0 109 
*Number of sample plots required for the combined sample 
mean to be within +-10% of the true mean at the 95% 
confidence level. 
 
Table 7. Schemata and design statistics for calculating 
statistical efficiency gains of optimal allocation of samples to 
strata for the 227,873 ha of forested area in four counties of east 
central Mississippi USA.  
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